Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity
نویسندگان
چکیده
To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.
منابع مشابه
Effect of Organoclay on the Performance of Reverse Osmosis Membrane
This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the w...
متن کاملEffect of Nanoparticles on Thin-film Composite Membrane Surface Morphology and Productivity
To evaluate the significance of thin-film composite membrane surface morphology on water productivity, flat-sheet experiments were conducted with silicon dioxide, titanium dioxide, and cerium dioxide nanoparticles. The polyamide thin-film active layer exhibited a valley and ridge morphology that was directly related to the surface roughness, and was found to contribute to particle accumulation ...
متن کاملSeawater Desalination by using Nanofiltration (NF) and Brackish Water Reverse Osmosis (BWRO) Membranes in Sequential Mode of Operation
In this study, the applicability of nanofiltration (NF) membranes as a pretreatment prior to reverse osmosis (RO) in seawater desalination was investigated. The membranes used wereNF270 and NF90 as the NF membranes, while the brackish water (BW) RO membrane BW30 was used as the RO membrane. In desalination tests, permeates of the NF membraneswere collected and used as the feed to th...
متن کاملFabrication and Characterization of PES Based Nanofiltration Membrane Modified by Zeolite Nanoparticles for Water Desalination
In the present study, mixed matrix PES/zeolite nanoparticles nanofiltration membranes were prepared via the solution casting technique. The effect of zeolite concentration on the PES membrane performance and its properties was studied. Cross-sectional scanning electron microscope (SEM) observations showed that the porosity in the membrane sub-layer was increased with addition of zeolite into th...
متن کاملInvestigation of the Effect of Copolymer Antiscalant on TDS Removal Efficiency in Reverse Osmosis Membrane
Background & objectives: Nowadays, according to membrane-based filtration processes; the use of substances such as antiscalants that prevents the formation of deposits during the treatment process, is very important from industrial point of view. This study aimed to synthesize styrene-maleic anhydride copolymer (PSMA) using the radical polymerization method and to investigate the factors and pa...
متن کامل